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Abstract. It is shown that the mean-field renormalisation group technique of Indekeu et 
al may be applied directly to the self-avoiding walk (SAW) and percolation problems 
(without reference to the n -P 0 limit of interacting spin systems). Numerical results for 
the SAW and bond and site percolation (both directed and undirected) problems on the 
square lattice, obtained by using a variety of small cells, are reported. An isotropic 
transformation for the percolation problems on the d-dimensional hypercubic lattice is 
also discussed. 

1. Introduction 

Recently Indekeu eta1 (1 982) have introduced a method for constructing the recursion 
equations which describe a real space renormalisation group transformation for inter- 
acting spin systems. They note that since the magnetisation per site M = aflah, where 
f is the free energy per site, the product Mah should scale like the reciprocal of 
volume under a renormalisation group transformation. Indekeu et a1 define a renor- 
malisation group transformation within the context of a mean-field calculation by 
applying the constraint 

M’ = (N/N’)AM A = ah/ah’ (1.1) 
where M ’ ( M )  is the magnetisation per site in a system of N ’ ( N )  spins. By considering 
small groups (cells) of spins and simulating the effect of an infinite system by applying 
a mean-field approximation on the boundary of the cell, Indekeu et a1 obtain recursion 
relations for the nearest-neighbour interaction parameter in the limit of zero external 
field ( h  + O ) .  

The phase transitions which occur in spin systems may be termed thermal phase 
transitions since the probability that the system is in a given state is dependent on 
the temperature through a Boltzman factor. A second class of phase transitions are 
the geometric phase transitions typified by the self-avoiding walk (for a review see 
McKenzie 1976) and percolation problems (for a review see Essam 1980) in which 
the probability that the system is in a given ‘state’ is dependent only on the geometric 
properties of the lattice. The critical properties of these systems are, in general, 
analogous to those of interacting spin systems and various authors (e.g. Shapiro 1978, 
Malakis 1980, Young and Stinchcombe 1975, Reynolds er a1 1977, 1978, Redner 
1982) have applied real space renormalisation group techniques to these problems. 

In this paper the application of the method of Indekeu et a1 (1982) to the 
self-avoiding walk (SAW) and the percolation (both directed and undirected) problems 
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is considered. A brief description of the method as formulated for these problems is 
given in 9 2. Numerical results from small-cell calculations for the square lattice are 
presented in § 3. Results for the percolation problems with d (lattice dimensionality) 
>2, obtained using the smallest cell which allows an isotropic renormalisation group 
transformation of the hypercubic lattice are also presented in 9 3 .  Section 4 contains 
a summary of results and concluding remarks. 

2. Mean-field theory and recursion relations 

In the bond (site) percolation problem bonds (sites) of the lattice are occupied with 
normalised probability p and the role of order parameter is played by the percolation 
probability P ( p ) ,  the probability that the site at the origin is the source of an infinite 
cluster. Here the interpretation of the ‘external field’ is that used by Reynolds et a1 
(1977, 1978): the probability h that a given site is connected to a ‘ghost site’ which 
lies outside the lattice. In the directed percolation problem the flow of ‘fluid’ is 
restricted to one direction only along any bond. Here the term is used to denote that 
all parallel bonds in a hypercubic lattice are directed in the same sense. 

The percolation probability may be expressed as 

af a 
ah ah , P ( p )  = 1 --= 1 --E n,(p)(l - h y  

where sn,(p)  is the probability that the origin is the source of a cluster of size s (for 
undirected percolation n,  is simply the mean number of clusters of size s per site) and 
f is the analogue of the free energy per site (Essam 1980). The requirement that the 
analogue of the total free energy be preserved under a renormalisation group transfor- 
mation leads to the scaling requirement 

where primed (unprimed) quantities refer to a system of N’ (N) sites and A = ah/&’. 
We now follow Indekeu et a1 (1982) by determining P ( p )  within a ‘mean-field’ 

calculation (the formal application of mean-field approximations to percolation prob- 
lems has been discussed extensively by De’Bell and Essam 1981, 1983a) in which the 
connectivity within a cell of n sites is treated exactly and the probability that a site 
adjacent to the cell is connected to the infinite cluster is set to b. Hence if the cell 
consists of a single site 

(1-P(b,  h ) )=( l -h) ( l -pb) ‘  (2.3) 
where z is the coordination number of the lattice (setting b = P in (2.3) we obtain 
the usual mean-field theory equation). (Our approach differs slightly from that of 
Indekeu et a1 in that we determine P ( p )  at the origin and only use cells symmetric 
about the site at the origin. This is equivalent to treating every site in an infinite 
system by the same mean-field approximation. Indekeu et  a1 averaged the magnetisa- 
tion over all sites in a cell. While our method is more appropriate to the problems 
treated here, the differences in the two methods are essentially surface effects and 
should be negligible in the large-cell limit.) Since b is an effective percolation 
probability it must obey the same scaling condition as P :  

6’ = (N/N’)Ab. (2.4) 
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In the percolation problem, the percolation probability approaches zero as p 
approaches p c  and h approaches zero from above. Solving to leading order in b and 
h, the equation resulting from the substitution of (2.4) into (2.3) yields a recursion 
relation for p which is expected to be valid in the critical region. 

The critical behaviour of the observables for the SAW problem is analogous to that 
found in interacting spin and percolation problems (e.g. McKenzie 1976): indeed 
there is a formal equivalence between the SAW observables and those of an n-vector 
model in the limit n -* 0 (de Gennes 1972). However, the interpretation of the ordered 
phase in the SAW problem is not clear. The SAW has been used as a model of polymers 
in the dilute region and the magnetisation and external field of the n + O  n-vector 
model do have a physical interpretation for polymers in the semi-dilute phase (Des 
Cloizeaux 1975, Daoud et a1 1975); however, this does not provide a simple order 
parameter for the SAW problem. Redner and Reynolds (1981) have suggested that 
the order parameter for an isolated SAW is the fraction of monomers in an infinite 
SAW; however, their approach does not preserve the analogy with the magnetic system 
and in particular does not yield the value of the exponent y expected from the magnetic 
analogy. 

In this paper, it is assumed that a 'mean-field theory' for SAWS may be constructed 
by direct analogy with the percolation problem. We recall that the mean-field equation 
for the pair connectedness in the percolation problem reduces to a random-walk 
approximation in the region P = 0 ( p  s p c ,  h = 0) (De'Bell and Essam 1981, equation 
(2.14)) and note that within the mean-field approximation the percolation probability 
in the region p s p c  may be represented to leading order in h by a sum over finite 
clusters: 

(2.5) 

where C is the set of finite clusters with source at the origin and a single bond directly 
connecting a site of the cluster to the ghost site and W ( c , p )  is the weight factor 
determined by the number of bonds (sites) in the cluster and its perimeter. 

The SAW quantity analogous to the pair connectedness is the sum over all walks 
between the origin and site of r, with weight p associated with each step of a walk. 
Within the random-walk approximation this may be written 

where n(0) is the set of sites adjacent to the origin. By analogy with the percolation 
problem, the mean-field order parameter (for p < p c )  is assumed to be 

r n  

where Wn(r) is the number of n-step walks from the origin to r and h is the external 
field. The terms in the sum of (2.7) are a sum over all walks which pass through r 
and terminate with a step from a lattice site to the ghost site. Clearly the derivative 
of Ps with respect to the field is the analogue of the percolation mean size (or magnetic 
susceptibility): 
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Consider now a mean-field calculation of P, in which the effective value of P, 
calculated at sites neighbouring the origin is taken to be b ; then equations (2.6) and 
(2.7) lead to 

P , ( p ,  h ) = h + z p b + O ( h 2 , h b , b 2 ) = h ’ + O ( h ’ 2 )  (2.9) 

(which is just equation (2.3) to leading order). Clearly this interpretation of the 
effective field h’ may be extended to the case where walks within a cell are treated 
exactly (i.e. the self-avoiding constraint is applied) and walks outside the cell are 
treated by a mean-field approximation. 

In order to apply the method of Indekeu et a1 to the self-avoiding walk problem 
we assume the mean-field order parameter in the region p > p c  to be defined by (2.9) 
(or the corresponding equation for larger cells) and that it obeys the same scaling 
relation as the percolation probability (equation (2.2)) close to the critical point. 
Solving (2.2) to leading order in b then yields the zero-field recursion relation for p ,  
as described for the percolation problems. 

3. Numerical results 

3.1. Self-avoiding walks on the square lattice 

The technique described in § 2 has been applied to the SAW problem on the square 
lattice. The cells used belong to two classes, square cells and cross-shaped cells, and 
are shown in figure 1 .  By solving equation (2.2) for various pairs of cells, recursion 
relations for several different values of the length rescaling factor 1 = (N/N’ ) l ’d  have 
been obtained. The fixed points and corresponding thermal exponents y t  = 
ln(ap’/ap)/ln 1 and field exponents y h  = ln(ah’/ah)/ln I are presented in table 1. 

?!*  16) 

io ( 3 )  

Figure 1. Labelling of cells uw.4 for the SAW and undirected percolation problems. 

The fixed points and exponents of table 1 show a clear tendency to approach the 
expected values as the cell size is increased and are consistent with the prediction of 
Indekeu et a1 (1982) that application of the technique to cells of ever-increasing size 
should yield convergent sequences of results. (Convergent sequences would be 
obtained by comparing cells of similar shape. For completeness results obtained by 
comparing a square cell with a cross-shaped cell are included in table 1. These are 
in the same region as those obtained by comparing cells of similar shape but are 
clearly not part of the same sequences.) 
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3.2. Percolation on the square lattice 

Using the technique described in 0 2, recursion relations for the bond and site 
percolation problems on both the directed and undirected square lattices have been 
obtained. The fixed points and exponents are presented in table 1. Our results for 

Table 1. Fixed points ( p * :  first row of each label) and exponents (y, :  second row of each 
label: y h :  third row of each label) of the SAW. (a) undirected site percolation: ( b )  undirected 
bond percolation; (c) directed site percolation; ( d )  and directed bond percolation; ( e )  
square lattice problems. The labels a, P ,  . . . , for the SAW and undirected percolation 
problems refer to figure 1 and denote cells of linear dimension ( L )  1, 45, 3, 413, 5 ,  5 ,  
respectively. The labels (1, 3, 5 , .  . , )  for the directed problems refer to square cells of 
linear dimension ( L )  1,3,5,. . . (see text). 

( a )  LIL' a P Y 6 

P 0.333 
0.86 
1.53 

0.98 
1.62 

0.95 
1.58 

0.99 
1.61 

1.03 
1.64 

Y 0.349 

s 0.346 

E 0.353 

i 0.357 

0.366 
1.35 
1.89 
0.355 
1.10 
1.68 
0.359 
1.14 
1.70 
0.364 
1.21 
1.77 

0.333 
0.80 
1.38 
0.356 0.363 
1.02 1.18 
1.59 1.72 
0.363 0.370 
1.14 1.38 
1.70 1.89 

Expected values: pc = 0.3790, y, = 1.33, yh = 1.88 (McKenzie 1976) 

P 0.382 
0.767 
1.58 

Y 0.427 0.500 
0.804 0.979 
1.61 1.69 

s 0.436 0.500 0.500 
0.765 0.770 0.435 
1.60 1.63 1.55 

Expected values: pc = 0.593, yr = 0.75 k0.01, y h  = 1.93 + 0.07 (Reynolds er a! 1978, Essam 
1980). 

(c )  LIL' a P 

P 0.347 
0.808 
1.40 

Y 0.372 0.405 
0.880 1.121 
1.48 1.82 

Expected values: pc = 0.5, yr = 0.75 kO.01, y h  = 1.93k0.07 (Essam 1980) 
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Table l-continued. 

( d )  LIL’ 1 3 5 7 9 

3 0.555 
0.748 
1.426 

5 0.578 0.604 
0.765 0.793 
1.455 1.513 

7 0.592 0.615 0.626 
0.773 0.794 0.796 
1.471 1.524 1.541 

9 0.602 0.622 0.632 0.639 
0.776 0.794 0.794 0.793 
1.479 1.531 1.546 1.553 

11 0.610 0.628 0.637 0.643 0.647 
0.778 0.794 0.793 0.791 0.789 
1.486 1.536 1.550 1.555 1.560 

Expected values: p c  = 0.705, y, = 0.581 10.007 (De’Bell and Essam 1983a) 

( e )  LIL’ 1 3 5 7 9 

3 0.525 
0.767 
1.422 

5 0.540 0.558 
0.781 0.805 
1.449 1.508 

7 0.551 0.566 0.575 
0.786 0.803 0.799 
1.464 1.520 1.536 

9 0.558 0.572 0.580 0.586 
0.787 0.800 0.796 0.792 
1.473 1.527 1.541 1.550 

11 0.564 0.577 0.584 0.589 0.593 
0.787 0.797 0.793 0.788 0.785 
1.481 1.531 1.546 1.553 1.558 

Expected values: pc  = 0.645, y, = 0.581 i 0.007 

undirected percolation are restricted to rather small cells but are comparable with 
those of other RSRG calculations of similar difficulty. In the case of directed percolation 
results have been obtained for square cells of between 1 and 121 sites. 

In all of the problems considered the values of p *  show a clear (if slow) tendency 
to approach the expected value with increasing cell size. The values of y t  show an 
initial upward trend with increasing cell size, the expected downward trend only appear- 
ing in the results for the directed problems obtained from the largest cells used. In 
the directed percolation problems there are two characteristic divergent lengths: 
611 - Ipc-  pl-”” and t1 - Ipc -p i -” ’ ,  respectively the connectedness lengths parallel and 
perpendicular to the direction in which the system first percolates (Rinzel and Yeomans 
1981). Only 611 rescales like a simple length scale under the type of lattice transforma- 
tion described here, and the values of y t  reported in table 1 are approximations to 
l / v I I  (Redner 1982). The difference between vll and vl(vII > v,) is a reflection of the 



RG transformations for phase transitions 1285 

highly anisotropic nature of the large clusters which exist close to p c .  The initial values 
of y, obtained for directed percolation are close to those obtained for the undirected 
isotropic problem and it seems probably that the anisotropic nature of the directed 
problems is not clearly distinguished in the small-cell calculations. The values of y h  

for the undirected problems show an improvement with cell size similar to that found 
in the SAW problem. The estimates of Y h  for the directed problems also appear to 
form well behaved sequences and would be consistent with a value of y h  > 1.56. This 
would indicate that the directed exponents do not obey the usual scaling law Y h  = Ay, 
( ~ 1 . 4 7 :  Blease 1977, De’Bell and Essam 1983a). 

3.3. Percolation on the hypercubic lattices 

Indekeu et a1 (1982) have applied the mean-field renormalisation group method to 
a q-state Potts model on the d-dimensional hypercubic lattice by using a cell of only 
two sites (renormalised to a single site). Using their expression for the nearest- 
neighbour interaction fixed point 

and the relation between the critical probability p c  for undirected bond percolation 
and the critical point of the q + 1 Potts model (Kasteleyn and Fortuin 1969) 

~ k , ~ - ~  = 1 -exp[-K*/(q - 1)1 (3.2) 

we obtain 

p *  = 1/(2d - 1) (3.3) 

which is exactly the solution of the recursion relations for undirected bond percolation 
obtained using the technique described in § 2 with a two-spin cell. 

Unfortunately the two-spin cell transformation is anisotropic for d > 1. To study 
the percolation problems for general d we have constructed recursion relations using 
the smallest cell which provides an isotropic transformation for general d. That is a 
cell consisting of the site at the origin and its 2d nearest neighbours. The recursion 
relations for general d may readily be written down: for example, for undirected site 
percolation 

= (2d - i)p2 - (d - 1)p3 (3.4) 

with fixed point at 

~*={ (2d-1 ) - [ (2d-1 )2 -4 (d-1 ) ]”2} /2 (d- l ) .  (3.5) 

The fixed points and exponents for various values of d are given in table 2. In all 
of the problems considered the estimates of p *  improve with increasing dimensionality 
and the recursion relations have fixed points at the expected mean-field value in the 
large-d limit (i.e. p *  = 1/2d for the undirected problems and p y  = l / d  for directed 
problems). The exponents for the undirected problems show the expected variation 
with dimensionality below the critical dimension dc(=6) and approach (within the 
accuracy of the present calculation) the mean-field values at d,. The dimensional 
dependence of the exponents continues for d > d c  and this may be attributed to the 
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Table 2. Fixed points and exponents for the undirected (a i  and directed ( b )  percolation 
problems on the &dimensional hybercubic lattice. In all cases cells of (2d + 1) sites were 
used. Figures in brackets are reliable estimates of p c  (Reynolds et a[  1978, Sur et a/  
1977, Kirkpatrick 1976, Blease 1977, De'Bell and Essam 1983a, b). The expected values 
of y ,  and y,, are based on the exponent estimates obtained by other authors (Essam 1980, 
Blease 1977, De'Bell and Essam 1983a, b) and the relation y: = l iv ,  y h  = i [ d  + (y/v)] = A/v, 

Site problem Bond problem Expected results 
-- ( a )  

d P *  1'1 Y h  P *  )'I Y h  Y: Y h  

0.382(0.593) 0.77 1.58 0.347(0.500) 0.81 1.54 0.75 iO.01 1.93*0.07 
0.219(0.312) 0.99 2.15 0.203(0.312) 1.04 2.11 1.18k0.07 2.59*0.25 
0.153 1.20 2.73 0.144(0.198) 1.25 2.70 
0.117 1.39 3.31 0.112(0.141) 1.43 3.28 
0.095 1.57 3.89 0.091(0.106) 1.61 3.87 2 4 
0.080 1.74 4.47 0.077 1.79 4.45 2 4 
0.069 1.91 5.05 0.067 1.95 5.03 2 4 

( b  i 
d 

Site problem Bond problem Expected results 

2 0.586(0.705) 0.75 1.48 0.539t0.645) 0.76 1.45 0.58 
> 0.383(0.432) 0.95 2.09 0.347(0.383) 1.00 2.05 0.79* 0.01 
4 0.279 1.15 2.68 0.256(0.268) 1.22 2.64 
5 0.219 1.34 3.27 0.203(0.209) 1.41 3.23 1 
6 0.1% 1.53 3.86 0.169(0.171) 1.59 3.82 1 
7 0.153 1.70 4.44 0.144(0.146) 1.77 4.40 1 

implicit assumption of hyperscaling (as noted by Inedkeu et a1 1982). As noted 
previously in B 2 . 2  the exponents for directed percolation are close to the undirected 
values, and this may be assumed to be a small-cell effect. 

4. Summary 

It has been shown that the mean-field renormalisation group method recently intro- 
duced by Indekeu et a1 (1982) may be directly applied to the self-avoiding walk and 
percolation problems. Though no explicit use has been made of the relations between 
these models and the n + O  limits of interacting spin models, the analogies between 
the geometric and thermal models have been preserved (i.e., the defining equations 
of the renormalisation group transformation are the exact analogues of those for 
interacting spin systems). 

Results for the square lattice have been obtained by the use of a variety of small 
cells (table 1). The values of p * ,  y h  and, in the case of the SAW problem, y ,  all show 
an improvement with increasing cell size similar to that found by Indekeu et a1 for 
the square lattice Ising model, and are consistent with the suggestion of Indekeu et 
a1 that the results should be convergent and hence that extrapolation techniques 
should be applicable to large-cell calculations. In this respect the initial movement 
of y r  for the percolation problems away from its expected value is disappointing; 
however, the results for directed percolation indicate that this behaviour may be 
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associated with small cells only. We note that initial results for yr in the undirected 
site percolation problem by the method of Reynolds et a1 (1978) showed some 
oscillatory behaviour, while results based on larger cells appeared convergent. 

Finally calculations for percolation problems on a d-dimensional hypercubic lattice 
(table 2) indicate that the estimates of p *  become increasingly accurate with increasing 
d.  The exponents show the expected dimensional dependence for d <d , ;  however, 
this dependence continues when d > d, due to the implicit assumption of hyperscaling. 
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